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Hardware-assisted Transparent Tracing and
Debugging on ARM

Zhenyu Ning and Fengwei Zhang

Abstract—Existing malware analysis platforms leave detectable
fingerprints like uncommon string properties in QEMU, signa-
tures in Android Java virtual machine, and artifacts in Linux
kernel profiles. Since these fingerprints provide the malware a
chance to split its behavior depending on whether the analysis sys-
tem is present or not, existing analysis systems are not sufficient
to analyze the sophisticated malware. In this paper, we propose
NINJA, a transparent malware analysis framework on ARM
platform with low artifacts. NINJA leverages a hardware-assisted
isolated execution environment TrustZone to transparently trace
and debug a target application with the help of Performance
Monitor Unit and Embedded Trace Macrocell. These hardware
features help NINJA to achieve transparency while avoiding
heavy performance overhead. NINJA does not modify system
software and is OS-agnostic on ARM platform. We implement
a prototype of NINJA (i.e., tracing and debugging subsystems),
and the experiment results show that NINJA is efficient and
transparent for malware analysis. An improved fast system
restoration mechanism is also designed to facilitate the continuous
malware analysis.

Index Terms—ARM, transparent, tracing and debugging

I. INTRODUCTION

MALWARE on the mobile platform exhibits an explosive
growth in recent years, and a variety of tools have been

proposed for malware detection and analysis [1], [2], [3], [4],
[5], [6], [7], [8]. However, sophisticated malware, which is
also known as evasive malware, is able to evade the analysis
by collecting the artifacts of the execution environment or the
analysis tool, and refuses to perform any malicious behavior
if an analysis system is detected.

As most of the existing mobile malware analysis sys-
tems [1], [5], [6] are based on emulation or virtualization tech-
nology, a series of anti-emulation and anti-virtualization tech-
niques [9], [10], [11] have been developed to challenge them.
These techniques show that the emulation or virtualization can
be detected by footprints like string properties, the absence of
particular hardware components, and performance slowdown.
The hardware-assisted virtualization technique [12], [13] im-
proves the transparency of the virtualization-based systems;
however, this approach leaves artifacts on instruction execution
semantics that could be detected by malware [14].

To address this challenge, researchers study the malware
on bare-metal devices via modifying the system software [2],
[3], [4], [7] or leveraging OS APIs [8], [15] to monitor
the runtime behavior of malware. Although bare-metal based
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approaches eliminate the detection of the emulator or hy-
pervisor, the artifacts introduced by the analysis tool itself
are still detectable by malware. Moreover, privileged malware
can even manipulate the analysis tool since they run in the
same environment. How to build a transparent mobile malware
analysis system is still a challenging problem.

This transparency problem has been well studied in the
traditional x86 architecture, and similar milestones have been
made from emulation-based analysis systems [16], [17] to
hardware-assisted virtualization analysis systems [18], [19],
[20], and then to bare-metal analysis systems [21], [22], [23],
[24]. However, this problem still challenges the state-of-the-art
malware analysis systems.

We consider that an analysis system consists of an En-
vironment (e.g., operating system, emulator, hypervisor, or
sandbox) and an Analyzer (e.g., instruction analyzer, API
tracer, or application debugger). The Environment provides the
Analyzer with the access to the states of the target malware,
and the Analyzer is responsible for the further analysis of the
states. Consider an analysis system that leverages the emulator
to record the system call sequence and sends the sequence
to a remote server for further analysis. In this system, the
Environment is the emulator, which provides access to the
system call sequence, and both the system call recorder and
the remote server belong to the Analyzer. Evasive malware can
detect this analysis system via anti-emulation techniques and
evade the analysis.

To build a transparent analysis system, we propose three
requirements. Firstly, the Environment must be isolated. Oth-
erwise, the Environment itself can be manipulated by the
malware. Secondly, the Environment exists on an off-the-
shelf (OTS) bare-metal platform without modifying the soft-
ware or hardware (e.g., emulation and virtualization are not).
Although studying the anti-emulation and anti-virtualization
techniques [9], [10], [11], [14] helps us to build a more
transparent system by fixing the imperfections of the Envi-
ronment, we consider perfect emulation or virtualization is
impractical due to the complexity of the software. Instead, if
the Environment already exists in the OTS bare-metal platform,
malware cannot detect the analysis system by the presence of
the Environment. Finally, the Analyzer should not leave any
detectable footprints (e.g., files, memory, registers, or code)
to the outside of the Environment. An Analyzer violating this
requirement can be detected.

In light of the three requirements, we present NINJA 1, a
transparent malware analysis framework on ARM platform

1A NINJA in feudal Japan has invisibility and transparency ability
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based on hardware features including TrustZone technology,
Performance Monitoring Unit (PMU), and Embedded Trace
Macrocell (ETM). We implement a prototype of NINJA that
embodies a trace subsystem with different tracing granularities
and a debug subsystem with a GDB-like debugging protocol
on ARM Juno development board. Additionally, hardware-
based traps and memory protection are leveraged to keep the
use of system registers transparent to the target application.
The experimental results show that our framework can trans-
parently monitor and analyze the behavior of the malware
samples. Moreover, NINJA introduces reasonable overhead.
We evaluate the performance of the trace subsystem with
several popular benchmarks, and the result shows that the
overheads of the instruction trace and system call trace are
less than 1% and the Android API trace introduces 4 to 154
times slowdown.

In addition, as the malware sample may tamper the current
system state, which can lead to an inaccurate analysis result of
the next sample, a fast restoration mechanism is required for
continuous malware analysis. Previous restoration mechanisms
either require a system reboot [24] or require special hard-
ware components [22], [25]. We also implement a prototype
of an improved fast restoration mechanism which leverages
TrustZone and ETM data address trace to selectively restore
memory and Network File System (NFS) to swap file system
for speeding up the restoration. The experiments show that our
fast restoration mechanism can restore the system in 0.029s to
2.160s on NXP i.MX53 Quick Start Board. Our experiments
with π calculation [26] and memory benchmark [27] also
show that the memory changed by a program is only a small
portion of the whole memory, which indicates that the selective
memory restoration is more effective than the full memory
restoration.

The main contributions of this work include:
• We present a hardware-assisted analysis framework,

named NINJA, on ARM platform with low artifacts. It
does not rely on emulation, virtualization, or system soft-
ware, and is OS-agnostic. NINJA resides in a hardware
isolation execution environment, and thus is transparent
to the analyzed malware.

• NINJA eliminates its footprints by novel techniques in-
cluding hardware traps, memory mapping interception,
and timer adjusting. The evaluation result demonstrates
the effectiveness of the mitigation and NINJA achieves a
high level of transparency.

• We implement a prototype of an improved fast and
complete restoration mechanism that selectively restores
memory, remotely swaps network file system, and com-
pletely restores registers to a clean state.

• We implement debugging and tracing subsystems with
a variety of program analysis functionalities. NINJA is
capable of studying kernel- or hypervisor-level malware.
The tracing subsystem exhibits a low performance over-
head. Our evaluation results show that the instruction
tracing and system call tracing are immune to timing
attacks.

This paper is an extended version of our previous work [28]

published in USENIX Security 2017. Based on that work, we
implement a fast restoration mechanism to facilitate the con-
tinuous malware analysis. We also improve the functionality
and usability of the trace and debug subsystem. The main
differences between these two versions are summarized as
follows:
• We improve previous fast restoration mechanism with se-

lective memory restoration, runtime file system switching,
and complete context recovery. The selective memory
restoration and runtime file system switching help to
improve the performance of system restoration while the
complete context recovery mitigates the incompleteness
of previous restoration systems.

• This paper introduces data address trace in the trace
subsystem which allows analysts to learn the target
memory address of memory read/write instructions. The
data address trace is helpful in many different use cases
such as fast restoration (see Section V-E), dynamic taint
analysis [29], and inferring encryption keys [30].

• The usability of trace subsystem is improved via in-
troducing address range and process ID filters. These
filters help analysts to focus on the interested processes
and memory addresses, and greatly reduce the noise in
the trace result. Moreover, we add six more stepping
modes for step-by-step debugging including speculative-
execution-related stepping that may help analyze recent
Meltdown [31] and Spectre [32] attacks.

II. BACKGROUND

A. TrustZone and Trusted Firmware

ARM TrustZone technology [33] introduces a hardware-
assisted security concept that divides the execution environ-
ment into two isolated domains, i.e., secure domain and non-
secure domain. Due to security concerns, the secure domain
could access the resources (e.g., memory and registers) of the
non-secure domain, but not vice versa. In ARMv8 architecture,
the only way to switch from normal domain to secure domain
is to trigger a secure exception [34], and the exception return
instruction eret is used to switch back to the normal domain
from the secure domain after the exception is handled.

ARM Trusted Firmware [35] (ATF) is an official implemen-
tation of secure domain provided by ARM, and it supports an
array of hardware platforms and emulators. While entering
the secure domain, the ATF saves the context of the normal
domain and dispatches the secure exception to the correspond-
ing exception handler. After the handler finishes the handling
process, the ATF restores the context of the normal domain
and switches back with eret instruction. ATF also provides
a trusted boot path by authenticating the firmware image with
several approaches like signatures and public keys.

B. PMU and ETM

The Performance Monitors Unit (PMU) [34] is a feature
widely implemented in both x86 and ARM architectures [36],
which leverages a set of performance counter registers to
calculate CPU events. Each architecture specifies a list of com-
mon events by event numbers, and different CPUs may also
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maintain additional event numbers. A Performance Monitor
Interrupt (PMI) can be triggered while a performance counter
register overflows. Note that the PMU is a non-invasive debug
feature that does not affect the performance of the CPU.

The Embedded Trace Macrocell (ETM) [37] is another
non-invasive debug component in ARM architecture. It traces
instructions and data by monitoring instruction and data buses
with low performance impact. Actually, ARM expects that
ETM has no effect on the functional performance of the pro-
cessor. The ETM generates an element for executed signpost
instructions that could be further used to reconstruct all the
executed instructions. The generated elements are encoded into
a trace stream and sent to a pre-allocated buffer on the chip.

III. RELATED WORK

A. Transparent Malware Analysis on x86

Ether [19] and Spider [18] leverage hardware virtualization
to build a malware analysis system and achieves high trans-
parency. Since the hardware virtualization has transparency is-
sues, these systems are naturally not transparent. LO-PHI [23]
leverages additional hardware sensors to monitor the disk oper-
ation and periodically poll memory snapshots, and it achieves
a higher transparency at the cost of incomplete view of system
states. MalT [24] leverages PMU to monitor the program
execution and increases the transparency by involving System
Manage Mode (SMM). However, it still suffers from external
timing attack, and the PMU registers are not well protected.
BareCloud [22] and MalGene [21] focus on detecting evasive
malware by executing malware in different environments and
comparing their behavior, but how to transparently fetch and
study the malware behavior still needs to be solved.

B. Dynamic Analysis Tools on ARM

Emulation-based systems. DroidScope [6] rebuilds the se-
mantic information of both the Android and the Dalvik vir-
tual machine based on QEMU. CopperDroid [5] is a VMI-
based analysis tool that reconstructs the behavior of An-
droid malware including inter-process communication (IPC)
and remote procedure call interaction. DroidScibe [1] uses
CopperDroid [5] to collect behavior profiles of malware and
automatically classifies them into different families. Due to the
emulator’s footprints, these systems are natural not transparent.
Hardware virtualization. Xen on ARM [13] migrates the
hardware virtualization based hypervisor Xen to ARM ar-
chitecture and makes the analysis based on hardware virtu-
alization feasible on mobile devices. KVM/ARM [12] uses
standard Linux components to improve the performance of
the hypervisor. Although the hardware virtualization based
solution is considered to be more transparent than the emula-
tion or traditional virtualization based solution, it still leaves
some detectable footprints on CPU semantics while executing
specific instructions [14].
Bare-metal systems. TaintDroid [2] is a system-wide infor-
mation flow tracking tool. It provides variable-level, message-
level, method-level, and file-level taint propagation by modi-
fying the original Android framework. TaintART [4] extends
the idea of TaintDroid on the most recent Android Java virtual

Figure 1: Architecture of NINJA.

machine Android Runtime (ART). VetDroid [7] reconstructs
the malicious behavior of the malware based on permission
usage, and it is applicable to taint analysis. DroidTrace [8]
uses ptrace to monitor the dynamic loading code on both
Java and native code level. BareDroid [38] provides a quick
restore mechanism that makes the bare-metal analysis of An-
droid applications feasible at scale. Malton [39] adopts multi-
layer monitoring, information flow tracking, and efficient path
exploration to ART to achieve a comprehensive view of the
malicious behavior. PackerGrind [40] and DexLego [41] work
against the packers to obtain the real behavior of Android
applications. Although these tools attempt to analyze the target
on real-world devices to improve transparency, the modifica-
tion to the Android framework leaves some memory footprints
or code signatures, and the ptrace-based approaches can be
detected by simply check the /proc/self/status file.
Moreover, these systems are vulnerable to privileged malware.

C. System Restoration

BareBox [42] restores the system memory via overriding
the OS memory with a previous snapshot and recovers the file
system with help of a mirror disk. BareCloud [22] requires
a cluster of hardware-based modular worker units and uses
Logical Volume Manager(LVM)-based snapshots to restore the
system. MalT [24] restores the system memory and context via
rebooting, and recovers the file system by monitoring the disk
operations. Bolt [25] uses the similar approach with BareBox
to recover the system memory and leverages hardware features
of flash storage devices to restore the file system. Unlike
these systems, NINJA utilizes hardware-trace-based selective
memory restoration to boost the memory restoration and
restores the file system via runtime file system switch.

IV. SYSTEM ARCHITECTURE

Figure 1 shows the architecture of NINJA. The NINJA
consists of a target executing platform and a remote debugging
client. In the target executing platform, TrustZone provides
hardware-based isolation between the normal and secure do-
mains while the rich OS (e.g., Linux or Android) runs in the
normal domain and NINJA runs in the secure domain. We
setup a customized exception handler in Exception Level 3
(EL3) to handle asynchronous exceptions (i.e., interrupts) of
our interest. NINJA contains a Trace Subsystem (TS) and a
Debug Subsystem (DS). The TS is designed to transparently
trace the execution of a target application, which does not
need any human interaction during the tracing. This feature is
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essential for automatic large-scale analysis. In contrast, the DS
relies on human analysts. In the remote debugging platform,
the analysts send debug commands via a secure serial port and
the DS then responds to the commands. During the execution
of an application, we use secure interrupts to switch into the
secure domain and then resume to the normal domain by
executing the exception return instruction eret.

A. Reliable Domain Switch

Normally, the smc instruction is used to trigger a domain
switch by signaling a Secure Monitor Call (SMC) exception
which is handled in EL3. However, as the execution of the
smc instruction may be blocked by privileged malware, this
software-based switch is not reliable.

Another solution is to trigger a secure interrupt which
is considered as an asynchronous exception in EL3. ARM
Generic Interrupt Controller (GIC) [43] partitions all interrupts
into secure group and non-secure group, and each interrupt
is configured to be either secure or non-secure. Moreover,
the GIC Security Extensions ensures that the normal domain
cannot access the configuration of a secure interrupt. Regard-
ing to NINJA, we configure PMI to be a secure interrupt
so that an overflow of the PMU registers leads to a switch
to the secure domain. To increase the flexibility, we also
use similar technology mentioned in [44] to configure the
General Purpose Input/Output (GPIO) buttons as the source
of secure Non-Maskable Interrupt (NMI) to trigger the switch.
The switch from secure domain to normal domain is achieved
by executing the exception return instruction eret.

B. The Trace Subsystem

The Trace Subsystem (TS) provides the analyst the ability
to trace the execution of the target application in different
granularities during automatic analysis including instruction
tracing, system call tracing, Android API tracing, and data
address tracing. We achieve the instruction, system call tracing,
and data address tracing via hardware component ETM, and
the Android API tracing with help of PMU registers. Note that
the Android API tracing is designed specifically for Android,
while the instruction and system call tracing are OS-agnostic.

By default, we use the GPIO button as the trigger of secure
NMIs. Once the button is pressed, a secure NMI request is
signaled to the GIC, and GIC routes this NMI to EL3. NINJA
toggles the enable status of ETM after receiving this interrupt
and outputs the tracing result if needed. Additionally, the PMU
registers are involved during the Android API trace. Note that
the NMI of GPIO buttons can be replaced by any system
events that trigger an interrupt (e.g., system calls, network
events, clock events, and etc.), and these events can be used
to indicate the start or end of the trace in different usage
scenarios.

Another advanced feature of ETM is that PMU events can
also be configured as an external input source. In light of this,
we specify different granularities of the tracing. For example,
we trace all the system calls by configuring the ETM to use
the signal of PMU event EXC_SVC as the external input.

C. The Debug Subsystem

In contrast to the TS, the Debug Subsystem (DS) is designed
for manual analysis. It establishes a secure channel between
the target executing platform and the remote debugging plat-
form, and provides a user interface for human analysts to
introspect the execution status of the target application.

To interrupt the execution of the target, we configure the
PMI to be secure and adjust the value of the PMU counter
registers to trigger an overflow at a desired point. NINJA
receives the secure interrupt after a PMU counter overflows
and pauses the execution of the target. A human analyst then
issues debugging commands via the secure serial port and
introspects the current status of the target following our GDB-
like debugging protocol. To ensure the PMI will be triggered
again, the DS sets desirable values to the PMU registers before
exiting the secure domain.

Moreover, similar to the TS, we specify the granularity
of the debugging by monitoring different PMU events. For
example, if we choose the event INST_RETIRED which
occurs after an instruction is retired, the execution of the target
application is paused after each instruction is executed. If the
event EXC_SVC is chosen, the DS takes control of the system
after each system call. Meantime, the event INST_SPEC
event helps the DS pause the execution after an instruction
is speculatively executed.

V. DESIGN AND IMPLEMENTATION

We implement NINJA on a 64-bit ARMv8 Juno r1 board and
a 32-bit ARMv7 NXP i.MX53 Quick Start Board (QSB). The
Juno board integrates two Cortex-A57 cores and four Cortex-
A53 cores, and each core includes separate PMU, ETM, and
TrustZone. Based on the ATF and Linaro’s deliverables on
Android 5.1.1 for Juno, we build a customized firmware for
the board. Since the ETMs of the cores on the Juno board only
support instruction tracing, we also implement a prototype
of NINJA on the i.MX53 QSB based on an open source
project [45] to demonstrate data address tracing. Note that
NINJA is also compatible with commercial mobile devices
because it relies on existing deployed hardware features.

A. Bridge the Semantic Gap

As with the VMI-based [46] and TEE-based [24] systems,
bridging the semantic gap is an essential step for NINJA to
conduct the analysis. In particular, we face two layers of
semantic gaps in our system.

1) The Gap between Normal and Secure Domains: In the
DS, NINJA uses PMI to trigger a trap to EL3. However, the
PMU counts the instructions executed in the CPU disregarding
to the current running process. That means the instruction
which triggers the PMI may belong to another application.
Thus, we first need to identify if the current process is the
target. Since NINJA is implemented in the secure domain,
it cannot understand the semantic information of the normal
domain, and we have to fill the semantic gap to learn the
current process in the OS.

In Linux, each process is represented by an instance of
thread_info data structure, and the one for the current
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Figure 2: Semantics in the Function ExecuteGotoImpl.

process could be obtained by SP & ∼(THREAD_SIZE
- 1) , where SP indicates the current stack pointer and
THREAD_SIZE represents the size of the stack. Next, we
can fetch the task_struct, which maintains the process
information (like pid, name, and memory layout), from the
thread_info. Then, the target process can be identified by
the pid or process name.

2) The Gap in Android Java Virtual Machine: Android
maintains a Java virtual machine to interpret Java bytecode,
and we need to figure out the current executing Java method
and bytecode during the Android API tracing and bytecode
stepping. DroidScope [6] fills the semantic gaps in the Dalvik
to understand the current status of the VM. However, as a
result of Android upgrades, Dalvik is no longer available in
recent Android versions, and the approach in DroidScope is
not applicable for us.

By manually analyzing the source code of ART, we
learn that the bytecode interpreter uses ExecuteGotoImpl
or ExecuteSwitchImpl function to execute the byte-
code. The approaches we used to fill the semantic gap
in these two functions are similar, and we use function
ExecuteGotoImpl as an example to explain our approach.
In Android, the bytecode of a Java method is organized
as a 16-bit array, and ART passes the bytecode array to
the function ExecuteGotoImpl together with the current
execution status such as the current thread, caller and callee
methods, and the call frame stack that stores the call stack
and parameters. Then, the function ExecuteGotoImpl
interprets the bytecode in the array following the control
flows, and a local variable dex_pc indicates the index of
the current interpreting bytecode in the array. By manually
checking the decompiled result of the function, we find that
the pointer to the bytecode array is stored in register X27
while variable dex_pc is kept by register X21, and the
call frame stack is maintained in register X19. Figure 2
shows the semantics in the function ExecuteGotoImpl. By
combining registers X21 and X27, we can locate the currently
executing bytecode. Moreover, a single frame in the call frame
stack is represented by an instance of StackFrame with the

variable link_ pointing to the previous frame. The variable
method_ indicates the current executing Java method, which
is represented by an instance of ArtMethod. Next, we fetch
the declaring class of the Java method following the pointer
declaring_class_. The pointer dex_cache_ in the
declaring class points to an instance of DexCache which is
used to maintain a cache for the DEX file, and the variable
dex_file_ in the DexCache finally points to the instance
of DexFile, which contains all information of a DEX file.
Detail description like the name of the method can be fetched
via the index of the method (i.e., dex_method_index_) in
the method array maintained by the DexFile. Note that both
ExecuteGotoImpl and ExecuteSwitchImpl functions
have four different template implementations in ART, and our
approach is applicable to all of them.

B. Secure Interrupts

In GIC, each interrupt is assigned to Group 0 (secure inter-
rupts) or Group 1 (non-secure interrupts) by a group of 32-bit
GICD_IGROUPR registers. Each bit in each GICD_IGROUPR
register represents the group information of a single interrupt,
and value 0 indicates Group 0 while value 1 means Group
1. For a given interrupt ID n, the index of the corresponding
GICD_IGROUPR register is given by n / 32, and the corre-
sponding bit in the register is n mod 32. Moreover, the GIC
maintains a target process list in GICD_ITARGETSR registers
for each interrupt. By default, the ATF configures the secure
interrupts to be handled in Cortex-A57 core 0.

As mentioned in Section IV-A, NINJA uses secure PMI and
NMI to trigger a reliable switch. As the secure interrupts are
handled in Cortex-A57 core 0, we run the target application on
the same core to reduce the overhead of the communication
between cores. In Juno board, the interrupt ID for PMI in
Cortex-A57 core 0 is 34. Thus, we clear the bit 2 of the register
GICD_IGROUPR1 (34 mod 32 = 2, 34 / 32 = 1) to mark the
interrupt 34 as secure. Similarly, we configure the interrupt
195, which is triggered by pressing a GPIO button, to be secure
by clearing the bit 3 of the register GICD_IGROUPR6.

C. The Trace Subsystem

1) Instruction Tracing: NINJA uses ETM, which is embed-
ded in the CPU and controlled by a group of trace registers, to
trace the executed instructions. As the target application is al-
ways executed in non-secure EL0 or non-secure EL1, we make
the ETM only trace these states by setting all EXLEVEL_S
bits and clearing all EXLEVEL_NS bits of the TRCVICTLR
register. Then, NINJA sets the EN bit of TRCPRGCTLR register
to start the instruction trace. In regard to stopping the trace, we
first clear the EN bit of TRCPRGCTLR register to disable ETM.
To decode the trace result, we use an open source analyzer
ptm2human [47] to convert the stream to a readable format.

The ETM also supports a variety of filters to narrow the
trace, and the narrowed trace helps the analysts focus on
only the interested pieces of instructions. NINJA also leverages
this feature to achieve multiple restrictions on the instruction
tracing.

The address range comparator enables the NINJA to include
only a specific address range or exclude a particular address
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range from the trace. There are four address comparator pairs
in each ETM on the Juno board, and each pair is controlled
by two TRCACVR registers to specify an address range.
The TRCVIIECTLR register is used to enable these address
comparator pairs and control the include or exclude logic.
Assume that we aim to restrict the trace in address range 0x0
to 0xF0000000. The INCLUDE bits of the TRCVIIECTLR
is set to 1 to enable the address comparator pair 1 while
the EXCLUDE bits are left to be 0. To specify the address
range in the address comparator pair 1, we set TRCACVR0 and
TRCACVR1 registers to 0x0 and 0xF0000000, respectively.
With this configuration, the instruction tracing is triggered on
in the specified address range.

The ARMv8 architecture [34] uses the CONTEXTIDR_EL1
register to identify the current process of the core. Correspond-
ingly, NINJA traces a single target process or multiple target
processes according to the CONTEXTIDR_EL1 register. The
address range comparator discussed above traces instructions
of different processes in the specified address range. How-
ever, in some situations, we are interested in the executed
instructions of a specific process (the process of the target
application). Thus, we leverage the context ID comparator
to achieve the restriction. NINJA first sets the CID bit of
TRCCONFIGR to ensure the context ID tracing is enabled.
Next, the TRCACATR0 and TRCACATR1 registers are set to
0x904 to add the context ID comparator 0 to the address
comparator TRCACVR0 and TRCACVR1. To make the context
ID comparator 0 matches the target process, we write the ID of
the target process to TRCCIDCVR0 register. Now, the instruct
tracing only occurs while instructions in the specified address
range of the target process are executing.

2) System Call Tracing: The system call of Linux in ARM
platforms is achieved by supervisor call instruction svc, and
an immediate value following the svc instruction indicates
the corresponding system call number. Since the ETM can be
configured to trace the PMU event EXC_SVC, which occurs
right after the execution of a svc instruction, we trace the
system calls via tracing this event in ETM.

As mentioned in Section IV-B, we can configure the
ETM to trace PMU events during the instruction trace. The
TRCEXTINSELR register is used to trace at most four external
input source, and we configure one of them to trace the
EXC_SVC event. In Cortex-A57, the event number of the
EXC_SVC event is 0x60, so we set the SEL0 bits of the
TRCEXTINSELR register to be 0x60. Also, the SELECT
bits of the second trace resource selection control register
TRCRSCTLR2 (TRCRSCTLR0 and TRCRSCTLR1 are re-
served) is configured to 0 to select the external input 0
as tracing resource 2. Next, we configure the EVENT0 bit
of TRCEVENTCTL0R register to 2 to select the resource 2
as event 0. Finally, the INSTEN bit of TRCEVENTCTL1R
register is set to 0x1 to enable event 0. Note that the X bit
of PMU register PMCR_EL0 should also be set to export the
events to ETM. After the configuration, the ETM can be used
to trace system calls, and the configuration to start and stop
the trace is similar to the one in Section V-C1.

3) Android API Tracing: Unlike the instruction trace and
system call trace, we cannot use ETM to directly trace the

Android APIs as the existence of the semantic gap. As
mentioned in Section V-A2, each Java method is interpreted by
ExecuteGotoImpl or ExecuteSwitchImpl function,
and ART jumps to these functions by a branch instruction bl.
Since a PMU event BR_RETIRED is fired after execution of
a branch instruction, we use PMU to trace the BR_RETIRED
event and reconstruct the semantic information following the
approach described in Section V-A2 if these functions are
invoked.

There exist six PMU counters for each processor on Juno
board, and we randomly select the last one to be used
for the Android API trace and the DS. Firstly, the E bit
of PMCR_EL0 register is set to enable the PMU. Then,
both PMCNTENSET_EL0 and PMINTENSET_EL1 registers
are set to 0x20 to enable the counter 6 and the overflow
interrupt of the counter 6. Next, we set PMEVTYPER5_EL0
register to 0x80000021 to make the counter 6 count
the BR_RETIRED event in non-secure EL0. Finally, the
counter PMEVCNTR5_EL0 is set to its maximum value
0xFFFFFFFF. With this configuration, a secure PMI is routed
to EL3 after the execution of the next branch instruction.
In the interrupt handler, the ELR_EL3 register, which is
identical to the PC of the normal domain, is examined to
identify whether the execution of normal domain encounters
ExecuteGotoImpl or ExecuteSwitchImpl function.
If true, we fill the semantic gap and fetch the information
about the current executing Java method. By the declaring
class of the method, we differentiate the Android APIs from
the developer defined methods. Before returning to the normal
domain, we reset the performance counter to its maximum
value to make sure the next execution of a branch instruction
leads to an overflow.

4) Data Address Tracing: The data address tracing provides
the addresses of the data involved in data storing and loading
instructions (e.g., str and ldr instructions). These addresses
can be used to facilitate the selective memory restoration (see
Section V-E), the dynamic taint analysis [29] or help infer
the keys of encryption algorithms [30]. Since the data address
tracing feature is not available on Juno board, we implement it
on the NXP i.MX53 Quick Start Board (QSB) which integrates
a Cortex-A8 processor that supports the data address tracing.
To demonstrate the OS-agnostic feature of NINJA, we use
Ubuntu 12.04 as the rich OS in this implementation.

Although the architecture of the i.MX53 QSB is different
from the Juno board, the configuration of the funnels and
buffers are similar to that mentioned in Section V-C1. In this
section, we only show how to make the ETM in the i.MX53
QSB trace the data addresses.

In the ETMVDCR3 register, NINJA sets the bit 16 to enable
the control of excluding memory addresses and the bit 8 to
exclude the address range comparator 1. In the address range
comparator 1, we exclude all the secure memory addresses
by setting the ETMACVR1 and ETMACVR2 to be 0x0 and
0xFFFFFFFF, respectively, and setting the bits [11:10] of
ETMACTR1 and ETMACTR2 to be 0b10. The ETMVDEVR
register is configured to be 0x6F to enable the data address
trace once the ETM is enabled. Due to the different ETM
architecture, NINJA uses the etm2human [48] instead of the
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Table I: Representative Stepping Modes in NINJA

PMU Event Event Description

INST RETIRED Fires after an instruction is retired.
BR RETIRED Fires after a branch instruction is retired.
BR MIS PRED Counts the mispredicted branch instruc-

tions.
L1D CACHE LD Counts the L1 data cache read operation.
L1D CACHE REFILL LD Counts the L1 data cache refill operation.
LD SPEC Fires after a load instruction is speculatively

executed.
BR IMMED SPEC Fires after a branch instruction is specula-

tively executed.

ptm2human project to decode the trace result.

D. The Debug Subsystem

Debugging is another essential approach to learn the be-
havior of an application. NINJA leverages a secure serial port
to connect the board to an external debugging client. There
exists two serial port (i.e., UART0 and UART1) in Juno board,
and the ATF uses UART0 as the debugging input/output of
both normal domain and secure domain. To build a secure
debugging bridge, NINJA uses UART1 as the debugging chan-
nel and marks it as a secure device by configuring NIC-
400 [49]. Alternatively, we can use a USB cable for this
purpose. In the DS, an analyst pauses the execution of the
target application by the secure NMI or predefined breakpoints
and send debugging commands to the board via the secure
serial port. NINJA processes the commands and outputs the
response to the serial port with a user-friendly format. The
information about symbols in both bytecode and machine code
are not supported at this moment, and we consider it as our
future work.

1) Step-by-Step Execution Debugging: The ARMv8 archi-
tecture provides instruction stepping support for the debuggers
by the SS bit of MDSCR_EL1 register. Once this bit is set, the
CPU generates a software step exception after each instruction
is executed, and the highest EL that this exception can be
routed is EL2. However, this approach has two fundamental
drawbacks: 1) the EL2 is normally prepared for the hardware
virtualization systems, which does not satisfy our transparency
requirements. 2) The instruction stepping changes the value
of PSTATE, which is accessible from EL1. Thus, we cannot
use the software step exception for the instruction stepping.
Another approach is to modify the target application’s code to
generate an SMC exception after each instruction. Nonethe-
less, the modification brings the side effect that the self-
checking malware may be aware of it.

The PMU event INST_RETIRED is fired after the execu-
tion of each instruction, and we use this event to implement
instruction stepping by using similar approach mentioned
in Section V-C3. With the configuration, NINJA pauses the
execution of the target after the execution of each instruction
and waits for the debugging commands.

Besides the instruction-level stepping, the PMU provides a
group of other events which are helpful for malware analysis.
Table I shows some representative stepping options supported
by NINJA via different PMU events. The BR_RETIRED event
can be used to trace the function calls. The BR_MIS_PRED,
LD_SPEC, and BR_IMMED_SPEC events are related to the

speculative execution. The recent Meltdown [31] and Spec-
tre [32] attacks abuse the speculative execution to leak the priv-
ileged resource, and these speculative-execution-related events
may help the analyst step the execution according to the spec-
ulative execution and get some insights for detecting these at-
tacks. The L1D_CACHE_LD and L1D_CACHE_REFILL_LD
events can be used to calculate the cache miss ratio, which
can be used to detect the ROP attack, Meltdown attack, and
Spectre attack [50], [51], [52].

Moreover, NINJA is capable of stepping Java byte-
code. Recall that the functions ExecuteGotoImpl and
ExecuteSwitchImpl interpret the bytecode in Java meth-
ods. In both functions, a branch instruction is used to switch
to the interpretation code of each Java bytecode. Thus, we use
BR_RETIRED event to trace the branch instructions and firstly
ensure the pc of normal domain is inside the two interpreter
functions. Next, we fill the semantic gap and monitor the
value of dex_pc. As the change of dex_pc value indicates
the change of current interpreting bytecode, we pause the
system once the dex_pc is changed to achieve Java bytecode
stepping.

2) Breakpoints: In ARMv8 architecture, a breakpoint ex-
ception is generated by either a software breakpoint or a
hardware breakpoint. The execution of brk instruction is
considered as a software breakpoint while the breakpoint
control registers DBGBCR_EL1 and breakpoint value regis-
ters DBGBVR_EL1 provide support for at most 16 hardware
breakpoints. However, similar to the software step exception,
the breakpoint exception generated in the normal domain
could not be routed to EL3, which breaks the transparency
requirement of NINJA. MalT [24] discusses another breakpoint
implementation that modifies the target’s code to trigger an
interrupt. Due to the transparency requirement, we avoid this
approach to keep our system transparent against the self-
checking malware. Thus, we implement the breakpoint based
on the instruction stepping technique discussed above. Once
the analyst adds a breakpoint, NINJA stores its address and
enable PMU to trace the execution of instructions. If the
address of an executing instruction matches the breakpoint,
NINJA pauses the execution and waits for debugging com-
mands. Otherwise, we return to the normal domain and do
not interrupt the execution of the target.

3) Memory Read/Write: NINJA supports memory access
with both physical and virtual addresses. The TrustZone
technology ensures that EL3 code can access the physical
memory of the normal domain, so it is straight forward for
NINJA to access memory via physical addresses. Regarding
memory accesses via virtual addresses, we have to find the
corresponding physical addresses for the virtual addresses in
the normal domain. Instead of manually walk through the page
tables, a series of Address Translation (AT) instructions help to
translate a 64-bit virtual address to a 48-bit physical address2

considering the translation stages, ELs and memory attributes.
As an example, the at s12e0r addr instruction performs
stage 1 and 2 (if available) translations as defined for EL0 to

2The ARMv8 architecture does not support more bits in the physical address
at this moment
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the 64-bit address addr, with permissions as if reading from
addr. The [47:12] bits of the corresponding physical address
are storing in the PA bits of the PAR_EL1 register, and the
[11:0] bits of the physical address are identical to the [11:0]
bits of the virtual address addr. After the translation, NINJA
directly manipulates the memory in normal domain according
to the debugging commands.

E. Improved System Restoration

System restoration is a critical task in continuous malware
analysis since the malware in previous analysis session may
tamper the system and affect the analysis of the next session. In
general, we consider the restoration in three different aspects:
memory, file system, and system context. Although some fast
restoration systems [22], [24], [25], [42] have been proposed,
challenges on all these three aspects.

Challenge 1: Full memory restoration is time-consuming
and unreasonable. Previous systems [25], [42] partition the
physical memory into different regions and use one of the
regions to maintain a clean copy of the OS memory which is
further used to restore the OS memory. However, fully restore
the whole OS memory is time consuming. As shown in [25],
the full memory restoration takes 85% of the whole system
restoration time. However, the execution of a program only
changes a small portion of the whole memory (as shown
in Section VII-C2). As the physical memory of a system
increases rapidly nowadays, the full memory restoration would
spend much more time on restoring the untainted memory.

Solution: Selective memory restoration. To avoid the cost
of copying untainted memory, we aim to learn the specific
memory addresses that the program have modified, and the
data address trace in TS matches this purpose perfectly. Thus,
based on the result of the data address trace discussed in
Section V-C4, we implement a selective memory restoration
mechanism and only restore the modified memory. Specifi-
cally, the i.MX53 QSB contains 1GB physical memory, and
we partition it into three regions: a 448MB region for the OS
(RG1), a 448MB region for the clean memory copy (RG2), and
a 128MB region for the firmware (RG3). Meanwhile, RG2 and
RG3 are configured as secure access only via the TrustZone
Address Space Controller (TZASC) [33]. After each analysis
session, we recover the memory in RG1 with the memory
in RG2 via the code in RG3 which is executed in secure
domain. Additionally, we enable the data address trace during
the analysis and learn the modified memory addresses from the
ETM trace result after each analysis session. In the memory
restoration process, only these changed memory are restored.

Challenge 2: File system restoration is either costly or
requiring special hardware. Most previous systems [22],
[24], [42] restore the file system via monitoring the disk
write operations, which introduces considerable performance
overhead. Bolt [25] uses the hardware feature of flash-based
block storage to achieve a fast restoration. However, this
requires special flash storage devices and the modification to
the firmware of the flash translation layer.

Solution: Runtime file system switching. Runtime file
system switching has been proposed on different systems [53],

Figure 3: Interrupt Instruction Skid.

[54], [55], which can be used to efficiently switch to a clean
copy of file system after each analysis session. We implement
our file system restoration based on the pivot_root system
call [53] in Linux to achieve the runtime file system switching.
NINJA maintains two clean copies of the file system on a
remote file server, and the target executing platform mounts
one of them as the file system via NFS. Once the current
analysis session is finished, NINJA switches to another copy
efficiently via pivot_root, and the restoration of the used
copy on the remote file server can be concurrent with the
analysis session to speed up the next restoration process. Note
that the NFS does not affect the transparency since it is widely
used in the popular cloud providers like Amazon AWS [56].

Challenge 3: The context restoration is not complete.
Bolt [25] restores the system context via recovering the general
purpose registers and three other system registers including
TTBR, SCTLR and ASID. However, there exist some other
system registers which may be manipulated by the malware
and affect the system. For example, the TTBCR register
determines which of the translation table base registers is
used for address translation, and the DACR register defines the
access permission of each memory domain. Failing to restore
these registers could lead to an unclear copy of the whole
system view.

Solution: Complete context restoration. We enumerate all
the system registers in the ARMv7 architecture and identify
the registers which may be critical to the malware analysis.
The values of these registers are restored during the context
restoration.

F. Interrupt Instruction Skid

In ARMv8 manual, the interrupts are referred as asyn-
chronous exceptions. Once an interrupt source is triggered, the
CPU continues executing the instructions instead of waiting
for the interrupt. Figure 3 shows the interrupt process in Juno
board. Assume that an interrupt source is triggered before
the MOV instruction is executed. The processor then sends
the interrupt request to the GIC and continues executing the
MOV instruction. The GIC processes the requested interrupt
according to the configuration, and signals the interrupt back
to the processor. Note that it takes GIC some time to finish
the process, so some instructions following the MOV instruction
have been executed when the interrupt arrives the processor.
As shown in Figure 3, the currently executing instruction is
the ADD instruction instead of the MOV instruction when the
interrupt arrives, and the instruction shadow region between
the MOV and ADD instructions is considered as interrupt
instruction skid.

The skid problem is a well-known problem [36], [57] and
affects NINJA since the currently executing instruction is not
the one that triggers the PMI when the PMI arrives the
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Figure 4: Protect the PMCR_EL0 Register via Traps.
processor. Thus, the DS may not exactly step the execution of
the processor. Although the skid problem cannot be completely
eliminated, the side-effect of the skid does not affect our
system significantly [28].

VI. TRANSPARENCY

As NINJA is not based on the emulator or other sandboxes,
the anti-analysis techniques mentioned in [9], [10], [11] cannot
detect the existence of NINJA. Moreover, other anti-debugging
techniques like anti-ptrace [58] do not work for NINJA since
our analysis does not use ptrace. Nonetheless, NINJA leaves
artifacts such as changes of the registers and the slow down of
the system, which may be detected by the target application.
Next, we discuss the mitigation of these artifacts.

A. Footprints Elimination

Since NINJA works in the secure domain, the hardware
prevents the target application from detecting the code or
memory usage of NINJA. Moreover, as the ATF restores all
the general purpose registers while entering the secure domain
and resumes them back while returning to the normal domain,
NINJA does not affect the registers used by the target applica-
tion as well. However, as we use ETM and PMU to achieve the
debugging and tracing functions, the modification to the PMU
registers and the ETM registers leaves a detectable footprint.
In ARMv8, the PMU and ETM registers are accessible via
both system-instruction and memory-mapped interfaces.

1) System-Instruction Interface: The system-instruction in-
terface makes the system registers readable via MRS instruction
and writable via MSR instruction. In NINJA, we ensure that the
access to the target system registers via these instructions to be
trapped to EL3. The TPM bit of the MDCR_EL3 register and the
TTA bit of the CPTR_EL3 register help to trap the access to
PMU and ETM registers to EL3, respectively; then we achieve
the transparency by providing artificial values to the normal
domain. Figure 4 is an example of manipulating the reading
to the PMCR_EL0 register and returning the default value of
the register. Before the MRS instruction is executed, a trap is
triggered to switch to the secure domain. NINJA then analyzes
the instruction that triggers the trap and learns that the return
value of PMCR_EL0 is stored to the general-purpose register
X0. Thus, we put the default value 0x41013000 to the general-
purpose register X0 and resume to the normal domain. Note
that the PC register of the normal domain should also be mod-
ified to skip the MRS instruction. We protect both the registers
that we modified (e.g., PMCR_EL0, PMCNTENSET_EL0) and
the registers modified by the hardware as a result of our usage
(e.g., PMINTENCLR_EL1, PMOVSCLR_EL0).

2) Memory Mapped Interface: Each of the PMU or ETM
related components occupies a distinct physical memory re-
gion, and the registers of the component can be accessed
via offsets in the region. Since these memory regions do

not locate in the DRAM (i.e., main memory), the TZASC,
which partitions the DRAM into secure regions and non-secure
regions, cannot protect them directly. Note that this hardware
memory region is not initialized by the system firmware by
default and the system software such as applications and OSes
cannot access it because the memory region is not mapped
into the virtual memory. However, advanced malware might
remap this physical memory region via functions like mmap
and ioremap. Thus, to further defend against these attacks,
we intercept the suspicious calls to these functions and redirect
the call to return an artificial memory region.

The memory size for both the PMU and ETM memory
regions is 64k, and we reserve a 128k memory region on
the DRAM to be the artificial PMU and ETM memory. The
ATF for Juno board uses the DRAM region 0x880000000
to 0x9ffffffff as the memory of the rich OS and the region
0xa00000000 to 0x1000000000 of the DRAM is not actually
initialized. Thus, we randomly choose the memory region
0xa00040000 to 0xa00060000 to be the region for artificial
memory mapped registers. While the system is booting, we
firstly duplicate the values in the PMU and ETM memory
regions into the artificial regions. As the function calls are
achieved by bl instruction, we intercept the call to the
interested functions by using PMU to trigger a PMI on the
execution of branch instructions and compare the pc of the
normal domain with the address of these functions. Next,
we manipulate the call to these functions by modification to
the parameters. Take ioremap function as an example. The
first parameter of the function, which is stored in the register
X0, indicates the target physical address, and we modify the
value stored at the register to the corresponding address in the
artificial memory region. With this approach, the application
never reads the real value of PMU and ETM registers, and
cannot be aware of NINJA.

B. Defending Against Timing Attacks

The target application may use the SoC or external timers
to detect the time elapsed in the secure domain since the DS
affects the performance of the processor and communicates
with a human analyst. Note that the TS using ETM does not
affect the performance of the processor and thus is immune
to the timing attack.

The ARMv8 architecture defines two types of timer compo-
nents, i.e., the memory-mapped timers and the generic timer
registers [34]. Other than these timers, the Juno board is
equipped with an additional Real Time Clock (RTC) com-
ponent PL031 [59] and two dual-timer modules SP804 [60]
to measure the time. For each one of these components,
we manipulate its value to make the time elapsed of NINJA
invisible.

Each of the memory-mapped timer components is mapped
to a pre-defined memory region, and all these memory regions
are writable in EL3. Thus, we record the value of the timer
or counter while entering NINJA and restore it before existing
NINJA. The RTC and dual-timer modules are also mapped to a
writable memory region, so we use a similar method to handle
them.
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The generic timer registers consist of a series of timer and
counter registers, and all of these registers are writable in EL3
except the physical counter register CNTPCT_EL0 and the vir-
tual counter register CNTVCT_EL0. For the writable registers,
we use the same approach as handling memory-mapped timers
to manipulate them. Although CNTPCT_EL0 is not directly
writable, the ARM architecture requires a memory-mapped
counter component to control the generation of the counter
value [34]. In the Juno board, the generic counter is mapped
to a controlling memory frame 0x2a430000-0x2a43ffff, and
writing to the memory address 0x2a430008 updates the value
of CNTPCT_EL0. The CNTVCT_EL0 register always holds
a value equal to the value of the physical counter register
minus the value of the virtual offset register CNTVOFF_EL2.
Thus, the update to the CNTPCT_EL0 register also updates
the CNTVCT_EL0 register.

Note that the above mechanism only considers the time
consumption of NINJA, and does not take the time consump-
tion of the ATF into account. Thus, to make it more precise,
we measure the average time consumption of the ATF during
the secure exception handling and minus it while restoring
the timer values. Besides the timers, the malware may also
leverage the PMU to count the CPU cycles. Thus, NINJA
checks the enabled PMU counters and restores their values
in a similar way to the writable timers.

The external timing attack cannot be defended by modifying
the local timer since external timers are involved. As the
instruction tracing in NINJA is immune to the timing attack,
we can use the TS to trace the execution of the target with DS
enabled and disabled. By comparing the trace result using the
approaches described in BareCloud [22] and MalGene [21],
we may identify the suspicious instructions that launch the
attack and defend against the attack by manipulating the
control flow in EL3 to bypass these instructions. However,
the effectiveness of this approach needs to be further studied.
Currently, defending against the external timing attack is an
open research problem [19], [24].

VII. EVALUATION

To evaluate NINJA, we fist compare it with existing analysis
and debugging tools on ARM. NINJA neither involves any
virtual machine or emulator nor uses the detectable Linux tools
like ptrace or strace. Moreover, to further improve the
transparency, we do not modify Android system software or
the Linux kernel. The detailed comparison is listed in Table II.
Since NINJA only relies on the ATF, the table shows that the
Trusted Computing Base (TCB) of NINJA is much smaller
than existing systems.

A. Tracing and Debugging Samples

To evaluate NINJA, we use Android 5.1.1 as the rich OS
on ARM Juno Board and Ubuntu 12.04 as the rich OS
on NXP i.MX53 QSB. On Juno board, we pick up the
ActivityLifecycle1 sample from DroidBench [63] project and
use NINJA to analyze it. We choose this specific sample since
it exhibits the representative malicious behavior that leaking
sensitive information network connection. In regard to the

NXP i.MX53 QSB, we use the data address trace in NINJA to
analyze a real-world rootkit, Suterusu [64].
Analyzing ActivityLifecycle1. To get an overview of the
sample, we first enable the Android API tracing fea-
ture to inspect the APIs that read sensitive information
(source) and APIs that leak information (sink), and find
a suspicious API call sequence. In the sequence, the
method TelephonyManager.getDeviceId and method
HttpURLConnection.connect are invoked in turn,
which indicates a potential flow that sends IMEI to a remote
server. As we know the network packets are sent via the system
call sys_sendto, we attempt to intercept the system call
and analyze the parameters of the system call. In Android,
the system calls are invoked by corresponding functions in
libc.so, and we get the address of the function for the
system call sys_sendto by disassembling libc.so. Thus,
we use NINJA to set a breakpoint at the address, and the second
parameter of the system call, which is stored in register X1,
shows that the sample sends a 181 bytes buffer to a remote
server. Then, we output the memory content of the buffer and
find that it is a HTTP GET request to host www.google.de
with path /search?q=353626078711780. Note that the
digits in the path is exactly the IMEI of the device.
Analyzing Suterusu. Since rootkits usually manipulate the
text section of the kernel, we apply the data address trace
with an address filter to monitor the modification to this
memory region. Moreover, to avoid the noises introduced by
other processes, we use the CID_WRITE_RETIRED event
of PMU to monitor the switch of executing processes. Once
Suterusu becomes the current process, we enable the data
address trace with the corresponding address range and context
ID filter. In our experiment, the text section of the kernel is
from 0x80032000 to 0x8082A000, and the data address
trace helps us find that Suterusu attempts to write to a series
of addresses included in this range. For example, it aims to
write 12 bytes starting from 0x800C9D74. By checking the
system symbols, we learn that this address is the start address
of function sys_read, which means that Suterusu hooks
this kernel function by modifying the first several instructions
of the function. Our experiment also reveals that some other
kernel functions are hooked in the same way.

B. Transparency Experiments

1) Accessing System Instruction Interface: To evaluate the
protection mechanism of the system instruction interface, we
write an Android application that reads the PMCR_EL0 and
PMCNTENSET_EL0 registers via MRS instruction. The values
of these two registers represent whether a performance counter
is enabled. We first use the application to read the registers
with NINJA disabled and check the value of the PMCR_EL0
and PMCNTENSET_EL0 registers which reflect the enable
status of the performance counters. At this moment, the value
of these registers indicates that the performance counters are
disabled. Then we press a GPIO button to enable the Android
API tracing feature of NINJA and read the registers again. As
the access to the registers is trapped into EL3 and the artificial
values are provided, the values of these registers still show
that the performance counters are disabled. This experiment
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Table II: Comparing with Other Tools. The source lines of code (SLOC) of the TCB is calculated by sloccount [61] based
on Android 5.1.1 and Linux kernel 3.18.20.

ATF = ARM Trusted Firmware, AOS = Android OS, LK = Linux Kernel

NINJA TaintDroid [2] TaintART [4] DroidTrace [8] CrowDroid [15] DroidScope [6] CopperDroid [5] NDroid [62]

No VM/emulator X X X X X

No ptrace/strace X X X X X X

No modification to Android X X X X X X

Analyzing native instruction X X X X X X

Trusted computing base ATF AOS + LK AOS + LK LK LK QEMU QEMU QEMU

SLOC of TCB (K) 27 56, 355 56, 355 12, 723 12, 723 489 489 489

shows that NINJA effectively eliminates the footprint on the
system instruction interface, and detailed experiment steps can
be found in [28].

2) Accessing Memory Mapped Interface: In this section,
we take ioremap function as an example to evaluate whether
the interception to the memory-mapping functions works. As
the ioremap function can be called only in the kernel space,
we write a kernel module that remaps the memory region of
the ETM by the ioremap function, and print the content
of the first 32 bytes in the region. Similar to the approach
discussed above, we first load the kernel module with NINJA
disabled and check the output memory content. Next, we
enable the instruction tracing feature of NINJA and reload the
kernel module to output the memory content again. In our
experiment, these two memory contents remain the same with
help of the artificial memory regions. This experiment shows
that we successfully hide the ETM status change to the normal
domain, and NINJA remains transparent. Detailed experiment
steps can be found in [28].

3) Adjusting the Timers: To evaluate whether our mecha-
nism that modifies the local timers works, we write a simple
application that launches a dummy loop for 1 billion times,
and calculate the execution time of the loop by the return
values of the API call System.currentTimeMillis().
In the first experiment, we record the execution time with
NINJA disabled, and the average time for 30 runs is 53.16s
with a standard deviation 2.97s. In the second experiment, we
enable the debugging mode of NINJA and pause the execution
during the loop by pressing the GPIO button. To simulate the
manual analysis, we send a command rr to output all the
general purpose registers and then read them for 60s. Finally,
a command c is sent to resume the execution of the target.
We repeat the second experiment with the timer adjusting
feature of NINJA enabled and disabled for 30 times each, and
record the execution time of the loop. The result shows that the
average execution time with timer adjusting feature disabled
is 116.33s with a standard deviation 2.24s, and that with timer
adjusting feature enabled is 54.33s with a standard deviation
3.77s. As the latter result exhibits similar execution time with
the original system, the malware cannot use the local timer to
detect the presence of the debugging system.
C. Performance Evaluation

1) Trace Subsystem: We evaluate the performance overhead
of the trace subsystem due to its automation characteristic.

Table III: Time Consumption of Calculating 1 Million Digits
of π on i.MX53 QSB.

Mean STD 95% CI Slowdown

Base: Tracing disabled 8.682s 0.072s [8.656s, 8.708s]
Instruction tracing 8.745s 0.039s [8.731s, 8.760s] ∼ 1x
System call tracing 8.745s 0.029s [8.735s, 8.756s] ∼ 1x
Data address tracing 8.748s 0.044s [8.733s, 8.764s] ∼ 1x

Performance overhead of the debugging subsystem is not
noticed by an analyst in front of the command console, and
the debugging system is designed with human interaction.
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Figure 5: Instruction Distribution of Calculating π.

To learn the performance overhead on the Linux binaries,
we build an executable that using an open source π calculation
algorithm provided by the GNU Multiple Precision Arithmetic
Library [26] to calculate 1 million digits of the π for 30 times
on i.MX53 QSB. The time consumptions of the π calculation
with and without the tracing functions are shown in Table III.
Note that the Android API tracing is not available since we use
Ubuntu as the rich OS on this board. As the table shows, the
time consumption of the π calculation with tracing disabled
is 8.682s, and that of the calculation with instruction tracing
enabled, system call tracing enabled, and data address tracing
enabled is 8.745s, 8.745s, and 8.748s, respectively. Even in the
worst case, the overhead of the ETM-based tracing solution
is less than 0.1%. For better understanding of the overhead,
we also use the TS to measure the distribution of different
instructions executed during the π calculation. As shown in
Figure 5, 40.61% of the executed instructions are arithmetic
instructions. The percentage of memory read instructions and
memory write instructions is 30.26% and 8.74%, respectively.
The branch instructions take 7.05 percent of the executed
instructions and the percentage of the other instructions is
13.34%.

To measure the performance overhead on the Android
applications, we use CF-Bench [65] downloaded from Google
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Table IV: The TS Performance Evaluation with CF-Bench [65] on Juno Board.

Native Scores Java Scores Overall Scores
Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown

Base: Tracing disabled 25380 1023 18758 1142 21407 1092

Instruction tracing 25364 908 ∼ 1x 18673 1095 ∼ 1x 21349 1011 ∼ 1x
System call tracing 25360 774 ∼ 1x 18664 1164 ∼ 1x 21342 911 ∼ 1x
Android API tracing 6452 24 ∼ 4x 122 4 ∼ 154x 2654 11 ∼ 8x

Play Store. The CF-Bench focuses on measuring both the Java
performance and native performance in Android system, and
we use it to evaluate the overhead for 30 times on Juno board.
Since the data address tracing is not supported on this board,
we eliminate it from the experiments. The result in Table IV
shows that the overheads of instruction tracing and system
call tracing are sufficiently small to ignore. The Android API
tracing brings 4x slowdown on the native score and 154x
slowdown on the Java score, and the overall slowdown is 8x.
This overhead is mainly due to the frequent domain switch
during the execution and bridging the semantic gap. To reduce
the overhead, we can combine ETM instruction trace with data
trace, and leverage the trace result to rebuild the semantic
information and API usage offline. Note that we make these
benchmarks to be executed only on Cortex-A57 core 0 by
setting their CPU affinity mask to 0x1 since NINJA only stays
in that core.

2) System Restoration: To measure the performance of
the system restoration on the i.MX53 QSB, we use the
cycle counter register to count the clock cycles consumed
by the restoration. Due to the selective memory restoration
mechanism, the restored memory size varies during differ-
ent analysis sessions. Thus, we also measure the memory
restoration time of different changed memory size. Each
restoration process is repeated for 100 times, and the average
time consumption is reported in Table V. Compared with
Bolt [25], the result in Table V shows that the domain switch
time and context restoration time of NINJA are slower, which
is caused by different testbeds and the restoration of addi-
tional registers. However, considering the time consumption
of memory restoration and file system restoration takes most
of the time during the restoration process, the time used for
domain switch and context restoration is ignorable. The full
memory restoration times of NINJA and Bolt are similar, but
the selective memory restoration makes NINJA 462x faster
than Bolt when the size of changed memory is small (1MB).
In regard to the file system restoration, NINJA takes 24ms
to switch the file system, which is 18x faster than the file
system restoration in Bolt. Note that NINJA still needs to
restore the restore the dirty file system on the remote server
after the file system switching. However, this can be done
synchronously with the next malware analysis session since
the restoration is performed on the remote server, and the
analyst does not need to wait for the restoration. Considering
that the memory restoration time takes 85% percentage of the
whole system restoration time in Bolt, we are also interested
in size of the changed memory during the execution of a
program. Specifically, we use the data address trace to record

Table V: Time Consumption of System Restoration (in µs).
The symbol \ means that the related data is not reported by
Bolt [25].

Ninja Bolt [25]

Domain Switch 6.6 1.2
Selective Memory Restoration (1MB) 4,618 \
Selective Memory Restoration (16MB) 75,562 \
Selective Memory Restoration (256MB) 1,214,709 \
Full Memory Restoration (448MB) 2,135,161 2,445,271
File System Restoration 24,351 433,917
Context Restoration 42 23

the target address of all memory write instructions during the
execution, and further calculate the changed memory size by
these addresses. We use this approach to learn the changed
memory size of calculating 1 million digits of π, and the result
shows that only about 7.96MB memory has been changed
during the execution. STREAM [27], a dedicated memory
benchmark, is also used in this experiment, and the execution
of the benchmark changes 114MB memory in total. This result
shows that the actual size of changed memory during the
program execution is a small portion of the whole memory, and
selective memory restoration would be much more efficient
than the full memory restoration.

VIII. DISCUSSION

NINJA leverages existing deployed hardware and is com-
patible with commercial mobile devices. However, the secure
domain on the commercial mobile devices is managed by the
Original Equipment Manufacturer (OEM). Thus, it requires
cooperation from the OEMs to implement NINJA on a com-
mercial mobile device.

The approach we used to fill the semantic gaps relies on
the understanding of the kernel data structures and memory
maps, and thus is vulnerable to the privileged malware. Patago-
nix [66] leverages a database of whitelisted applications binary
pages to learn the semantic information in the memory pages
of the target application. However, this approach is limited by
the knowledge of the analyzer. Currently, how to transparently
bridge the semantic gap without any assumption to the system
is still an open research problem [46].

The protection mechanism mentioned in Section VI-A helps
to improve transparency when the attackers try to use PMU
or ETM registers, and using shadow registers [67] can further
protect the critical system registers. However, if an advanced
attacker intentionally uses PMU or ETM to trace CPU events
or instructions and checks whether the trace result matches the
expected one, the mechanism of returning artificial or shadow
register values may not provide accurate result and affects
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transparency. To address this problem, we need to virtualize
the PMU and ETM, and this is left as our future work.

Though NINJA protects the system-instruction interface
access to the registers, the mechanism we used to protect
the memory mapped interface access maybe vulnerable to
advanced attacks such as directly manipulating the memory-
mapping, disabling MMU to gain physical memory access,
and using DMA to access memory. Note that these attacks
might be difficult to implement in practice (e.g., disabling
MMU might crash the system). To fully protect the memory-
mapped region of ETM and PMU registers, we would argue
that hardware support from TrustZone is needed. Since the
TZASC only protects the DRAM, we may need additional
hardware features to extend the idea of TZASC to the whole
physical memory region.

Although the instruction skid of the PMI cannot be com-
pletely eliminated, we can also enable ETM between two
PMIs to learn the instructions in the skid. Moreover, since
the instruction skid is caused by the delay of the PMI, similar
hardware component like Local Advanced Programmable In-
terrupt Controller [24] on x86 which handles interrupt locally
may help to mitigate the issue by reducing the response time.

IX. CONCLUSIONS

In this paper, we present NINJA, a transparent malware
analysis framework on ARM platform. It embodies a series
of analysis functionalities like tracing and debugging via
hardware-assisted isolation execution environment TrustZone
and hardware features PMU and ETM. Since NINJA does
not involve emulator or framework modification, it is more
transparent than existing analysis tools on ARM. To minimize
the artifacts introduced by NINJA, we adopt register protection
mechanism to protect all involving registers based on hardware
traps and runtime function interception. Moreover, as the
TrustZone and the hardware components are widely equipped
by OTS mobile devices, NINJA can be easily transplanted to
existing mobile platforms. A fast restoration mechanism is also
implemented in NINJA to facilitate the continuous malware
analysis. Our experiment results show that performance over-
heads of the instruction tracing and system call tracing are less
than 1% while the Android API tracing introduces 4 to 154
times slowdown.
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